
Collections in Smalltalk

CS410/510 Advanced Programming
 Lecture 5:

1

“List” Operations

• Last week you heard about list

operations in Haskell

• For each there is a corresponding

operation in Smalltalk; most work on any

collection, not just lists.

• Advanced programmers use these

operations; they almost never munge

around with array indexes or pointers

2

map

find

filter

all

any

foldl

collect:

detect:

select:

allSatisfy:

anySatisfy:

inject: into:

3

Haskell ⇔ Smalltalk crib sheet

• If you ever find yourself writing a loop, or

a recursive method, that builds a new

collection based on an old one:

• STOP!

• Is this a collect:?

•

4

collect: captures a pattern

What about do:?

• do: does some action on every element of a

existing collection

• collect: builds a new collection based on

applying a function to every element of an

existing collection

• If you find yourself writing:

newCollection := <someclass> new.

self do: [:each | newCollection add: (<an expression involving each>)].

<proceed to use newCollection>

• Consider using collect: instead

5

Maybe types vs. Control

• Sometimes you don!t know if an element

is in a collection

find:: (a -> Bool) -> [a] -> Maybe a

detect: [:each!aBlock] ifNone: [anotherBlock]

Examples:

#(1 3 5) detect: [: each!each even] ! error

#(1 3 5) detect: [: each!each even] ifNone: [2] ! 2

#(1 3 4) detect: [: each!each even] ! 4

6

Anonymous functions

• [: each!each even] is an anonymous function

• What about named functions?

• there aren!t any! Methods are not functions

• [!] will turn a message-send into a function

 [:n!n + 1] is the successor function

Haskell is briefer (+1)

• You could write a method that answers a

function

7

folds

foldr substitutes from the right:

foldr (+) 0 [1, 2, 3] ! 1 + 2 + 3 + 0

or, more precisely: 1 + (2 + (3 + 0))

foldl substitutes from the left:

foldl (+) 0 [1, 2, 3] ! 0 + 1 + 2 + 3

or, more precisely: ((0 + 1) + 2) + 3

inject:into: is foldl

(1 to: 3) inject: 0 into: [:acc :each!acc + each]

8

inject:into: example

9

inject:into: example

(1 to: 6)

! inject: Set new

! into: [:acc :each!each even

! ! ifTrue: [acc add: each]. acc]

9

inject:into: example

(1 to: 6)

! inject: Set new

! into: [:acc :each!each even

! ! ifTrue: [acc add: each]. acc]

! a Set(6 2 4)

9

inject:into: example

(1 to: 6)

! inject: Set new

! into: [:acc :each!each even

! ! ifTrue: [acc add: each]. acc]

! a Set(6 2 4)

((1 to: 6) select: [:each!each even]) asSet

9

inject:into: example

(1 to: 6)

! inject: Set new

! into: [:acc :each!each even

! ! ifTrue: [acc add: each]. acc]

! a Set(6 2 4)

((1 to: 6) select: [:each!each even]) asSet

what"s the difference?

9

common patterns captured by iterators

• count: aPredicate

• answers the number of elements for which aPredicate is true

• do: elementBlock separatedBy: separatorBlock

• execute the elementBlock for each element, and the separator block

between the elements.

• do: aBlock without: anItem

• execute aBlock for those elements that are not equal to anItem

• detectMax: aBlock

• answer the element for which aBlock evaluates to the highest

magnitude

10

…and on SequenceableCollections

• with: otherCollection collect: twoArgBlock
• twoArgBlock calculates the elements of the result

• with: otherCollection do: twoArgBlock
• twoArgBlock does something with corresponding elements of self and

otherCollection

• withIndexCollect: twoArgBlock
• twoArgBlock calculates the elements of the result based on each of my

elements and its index

• withIndexDo: twoArgBlock
• twoArgBlock does something with corresponding elements of self and

each element!s index

11

Permutations and Combinations

• permutationsDo: aBlock

• execute aBlock (self size factorial) times, with a single copy of self

reordered in all possible ways.

• combinations: kk atATimeDo: aBlock

• take my items kk at a time, and evaluate aBlock (self size take: kk)

times, once for each combination. aBlock takes an array of elements;

each combination occurs only once, and order of the elements does

not matter.

12

and more …

• allButFirstDo:

• allButLastDo:

• doDisplayingProgress:

13

“List Comprehensions”

• Generators

14

[1..10]

[1,5..25]

• Manipulators

[i * 2!i <– [2..8]]

[i * 2!i <– [2..8]], even i

[(i,j) ! i <– [2..4], j <–[7..9]]

zip [2..4] [7..9]

Programming is about finding patterns

• If the same pattern comes up in several

places

• abstract it into a programming language

element (method, class, function)

• replace all of the occurrences of the pattern

with the abstraction

• once and only once

• define the pattern once

15

Tuple example

testTuple

self assert: ((2 to: 4) with: (7 to: 9) collect: [:a :b | (a,b)])

 = {(2, 7) . (3, 8) . (4, 9)}

testHaskellStyleInterval

self assert: (1, 3 ~ 12) asArray = #(1 3 5 7 9 11)

16

